Chem. Ber. 114, 2375 - 2381 (1981)

Pentanortriterpenoide aus Azadirachta indica A. Juss (Meliaceae)

Wolfgang Kraus* und Rudolf Cramer

Institut für Chemie der Universität Hohenheim, Lehrstuhl für Organische Chemie, Garbenstr. 30, D-7000 Stuttgart 70

Eingegangen am 1. Dezember 1980

Aus Samenöl, Blättern und Rinde von *Azadirachta indica* A. Júss (*Meliaceae*) wurden erstmals Pentanortriterpenoide isoliert. Nimbinen (1a), 6-Desacetylnimbinen (1b), Nimbandiol (2a) und 6-O-Acetylnimbandiol (2b) finden sich im Samenöl, 1a, b und 2a in den Blättern, 1a und b in der Rinde. Die Konstitutionen wurden NMR-spektroskopisch zugeordnet.

Pentanortriterpenoids from Azadirachta indica A. Juss (Meliaceae)

Pentanortriterpenoids have been isolated for the first time from seed oil, leaves, and bark of *Azadirachta indica*. Nimbinene (1a), 6-deacetylnimbinene (1b), nimbandiol (2a), and 6-O-acetylnimbandiol (2b) have been found in the seed oil, 1a, b, and 2a in the leaves, 1a and b in the bark. The structure determination was carried out by NMR spectroscopy.

Pentanortriterpenoide sind bisher als Inhaltsstoffe des Neem-Baums, Azadirachta indica A. Juss (*Meliaceae*), nicht bekannt geworden. Wir berichten im folgenden über die Isolierung und Konstitutionsaufklärung von Nimbinen (**1a**), 6-Desacetylnimbinen (**1b**), Nimbandiol (**2a**)¹⁾ und 6-O-Acetylnimbandiol (**2b**) aus Früchten, Blättern und Rinde des Neem-Baums.

Verteilung des aus dem Samenöl durch Extraktion mit Ethanol gewonnenen "Neem-Extractive"²⁾ mit Petrolether/Methanol/Wasser und nachfolgende Chromatographie der Methanol-Phase an Kieselgel ergab neben den bereits bekannten Inhaltsstoffen Nimbin³⁾, 6-Desacetylnimbin⁴⁾, Salannin⁵⁾ und Epoxyazadiradion⁶⁾ sowie den neuen Tetranortriterpenoiden Desacetylsalannin, Salannol und Diacetylvilasinin⁷⁾ ein Gemisch der Komponenten **1a** – **2b**, die durch RP-Chromatographie getrennt wurden. **1a**, **b** und **2a** erhielt man zunächst durch Chromatographie der Etherextrakte aus den Blättern²⁾ sowie **1a** und **b** aus den Etherextrakten der Rinde²⁾. Die Konstitutionszuordnung erfolgte aufgrund der IR-, Massen- und NMR-Spektren mit Hilfe von Doppel-

Chem. Ber. 114 (1981)

© Verlag Chemie GmbH, D-6940 Weinheim, 1981 0009 – 2940/81/0707 – 2375 \$ 02.50/0 resonanzmessungen, Messungen des Nuclear-Overhauser-Effekts (NOE) im FT-Differenzspektrum und selektiver ¹³C-¹H-Entkopplung. Die ¹H- und ¹³C-NMR-Spektren wurden vollständig zugeordnet.

	1 a ^{a)}	1 b ^{b)}
2-Ηα	2.90 (dddq, $J_{2\alpha,2\beta} = 19.5$, $J_{2\alpha,3} = 5.5$, $J_{2\alpha,5} =$	2.86 (dddt, $J_{2\alpha,2\beta} = 19.4$, $J_{2\alpha,3} = 5.6$, $J_{2\alpha,5} =$
o 110	1.5, $J_{2\alpha,29} = 1$)	$0.8, J_{2\alpha,29} = 1)$
2-НВ	3.01 (dddq, $J_{2\beta,3} = 3$, $J_{2\beta,5} = 2$, $J_{28,29} = 1$)	2.97 (dddt, $J_{2\beta,3} = 3$, $J_{2\beta,5} = 1.8$, $J_{2\beta,29} = 1$, $J_{2\alpha,28} = 19.4$)
3-H	5.60 (dddq, $J_{3,5} = 1$, $J_{2\alpha,3} = 5.5$, $J_{2\beta,3} = 3$, $J_{3,29} = 1$)	5.57 (dddt, $J_{3,5} = 1$, $J_{2\alpha,3} = 5.6$, $J_{2\beta,3} = 3$, $J_{3,29} = 1$)
5-H	$3.30 (d_{br.}, J_{5.6} = 12.5)$	2.91 (d_{br} , $J_{5.6} = 12.5$)
6-H	5.36 (dd _{br.} , $J_{5,6} = 12.5$, $J_{6,7} = 3.5$)	4.00 (dd, $J_{5,6} = 12.5$, $J_{6,7} = 3.5$)
7-H	4.08 (d, $J_{7,6} = 3.5$)	4.03 (d, $J_{7,6} = 3.5$)
9-H	2.74 (t, $J_{9,11\alpha} = J_{9,11\beta} = 6$)	2.64 (dd, $J_{9,11\alpha} = 5.8$, $J_{9,11\beta} = 4.4$)
11-Ηα	2.82 (dd, $J_{11\alpha,11\beta} = 16.5$, $J_{9,11\alpha} = 6$)	2.79 (dd, $J_{11\alpha,11\beta} = 16$, $J_{11\alpha,9} = 5.8$)
11-Ηβ	2.26 (dd, $J_{11\beta,11\alpha} = 16.5$, $J_{9,11\beta} = 6$)	2.22 (dd, $J_{11\beta,11\alpha} = 16$, $J_{11\beta,9} = 4.4$)
15-H	5.50 (dddq, $J_{15,16\alpha} = 6.8$, $J_{15,16\beta} = 8$, $J_{15,17} = 1$, $J_{15,18} = 2$)	5.44 (dddq, $J_{15,16\alpha} = 6.8$, $J_{15,16\beta} = 7$, $J_{15,17} = 1$, $J_{15,18} = 1.6$)
16-Ηα	2.17 (dd _{br.} , $J_{16\alpha,16\beta} = 12$, $J_{15,16\alpha} = 6.8$)	2.16 (dd _{br.} , $J_{16\alpha,16\beta} = 11.8$, $J_{16\alpha,15} = 6.8$)
16-Hβ	2.04 (ddd, $J_{16\beta,17} = 8.5$, $J_{16\alpha,16\beta} = 12$, $J_{15,16\beta} = 8$)	2.04 (dd _{br.} , $J_{16\beta,15} = 7$, $J_{16\beta,17} = 8.2$)
17-H	$3.64 (d_{br.}, J_{17.18} = 1)$	3.66 (d_{br} , $J_{17.15} = 1$)
18-H	1.68 (dd, $J_{18,15} = 2$, $J_{18,17} = 1$)	1.67 ($d_{br.}$, $J_{15,18} = 1.6$)
19-H	1.12 (s)	1.04 (s)
21-H	7.32 (m)	7.32 (m)
22-H	6.28 (m)	6.27 (m)
23-H	7.22 (m)	7.21 (m)
29-H	1.78 (m)	2.04 (s)
30-Н	1.38 (s)	1.30 (s)
OH	_	_ ·
ОН	-	_
CO ₂ CH ₃	3.57 (s)	3.57 (s)
OCOCH1	2.14 (s)	

Tab. 1. ¹H-NMR-Spektren von 1a, b und 2a - c (CDCl₃, δ bezogen auf TMS = 0), Kopplungskonstanten in Hz

	2a ^{b)}	2b ^{c)}	2c ^{d)}
2-H	5.75 (d, $J_{2,3} = 10.2$)	5.79 (d, $J_{2,3} = 10$)	5.85 (d, $J_{2,3} = 10$)
3-H	6.53 (d, $J_{3,2} = 10.2$)	6.50 (d, $J_{2,3} = 10$)	6.74 (d, $J_{2,3} = 10$)
5-H	2.66 (d, $J_{5,6} = 11.5$)	3.07 (d, $J_{5,6} = 12.5$)	3.72 (d, J = 12)
6-H	4.24 (ddd, $J_{\text{HCOH}} = 7.5$, $J_{6,7} = 3.5$, $J_{5,6} = 11.5$)	5.47 (dd, $J_{5,6} = 12.5$, $J_{6,7} = 3$)	5.46 (dd, $J_{6,7} = 3$, $J_{5,6} = 12$)
7-H	$3.99 (d, J_{7,6} = 3.5)$	4.08 (d, $J_{6,7} = 3$)	3.97 (d, J = 3)
9-H	2.70 (dd, $J_{9,11\alpha} = 6$, $J_{9,11\beta} = 4$)	2.79 (t, $J_{9,11\alpha} = J_{9,11\beta} = 6$)	3.00 – 2.74 (m)
11-Ηα	2.91 (dd, $J_{11\alpha,11\beta} = 16.5$, $J_{9,11\alpha} = 6$)	2.90 (dd, $J_{11\alpha,11\beta} = 16$, $J_{9,11\alpha} = 6$)	
11-Ηβ	2.18 (dd, $J_{11\beta,11\alpha} = 16.5$, $J_{9,11\beta} = 4$)	2.22 (dd, $J_{11\alpha,11\beta} = 16$, $J_{9,11\beta} = 6$)	2.40-1.98 (m)
15-H	5.48 (dddq, $J_{15,16\alpha} = 7$, $J_{15,16\beta} = 7$, $J_{15,17} = 1$, $J_{15,18} = 1.8$)	5.55 (dddq, $J_{15,16\alpha} = 7$, $J_{15,16\beta} = 7$, $J_{15,17} = 1$, $J_{15,18} = 1.7$)	5.52 (m)
16-Ηα	2.16 (dd _{br.} , $J_{16\alpha,16\beta} = 12$, $J_{15,16\alpha} = 7$)	$\left.\begin{array}{c} 2.21 \ (\mathrm{dd}, \ J_{16\alpha, 16\beta} = 12, \\ J_{16\alpha, 15} = 7) \end{array}\right\}$	2.40-1.98 (m)
16-Ηβ	2.02 (ddd, $J_{16\beta,17} = 8$, $J_{16\alpha,16\beta} = 12$, $J_{16\beta,15} = 7$)	2.05 (ddd, $J_{16\beta,17} = 8$, $J_{16\beta,15} = 7$, $J_{16\alpha,16\beta} = 12$)	
17-H	3.65 (d_{br} , $J_{16\beta,17} = 8$)	$3.66 (d_{br.}, J_{16\beta,17} = 8)$	3.63-3.58 (m)
18-H	1.67 (d, $J_{18,15} = 1.8$)	1.68 (d, $J_{15,18} = 1.7$)	1.66 (d, J = 1.6)
19-H	1.16 (s)	1.25 (s)	1.26 (s)
21-H	7.33 (m)	7.33 (m)	7.31 (m)
22-H	6.26 (m)	6.32 (m)	6.32 (m)
23-H	7.21 (m)	7.23 (m)	7.22 (m)
29-H	1.58 (s)	1.39 (s)	1.53 (s)
30-H	1.30 (s)	1.37 (s)	1.35 (s)
ОН	4.29 (s) ^{e)}	3.30 (s)	-
ОН	3.14 (d) ^{f)}	_	-
CO ₂ CH ₃	3.63 (s)	3.64 (s)	3.62 (s)
OCOCH ₃	-	2.22 (s)	2.14 (s) und 2.01 (s)

Tab. 1 (Fortsetzung)

a) 500 MHz. - b) 360 MHz. - c) 300 MHz. - d) 90 MHz. - e) C-4-OH. - f) C-6-OH.

Nimbinen (1a) und 6-Desacetylnimbinen (1b)

Die Summenformel $C_{28}H_{34}O_7$ von **1a** wurde aus der Elementaranalyse ermittelt. Die NMR-Spektren (Tab. 1 und 2) stimmen weitgehend mit den Spektren des Nimbins³⁾ überein. Danach besitzt **1a** ein C-Seco-Grundskelett mit einem α -ständigen Furanylring an C-17, einer tetrasubstituierten Doppelbindung in Ring D, einer Sauerstoffbrücke von C-7 nach C-15, einer Methoxycarbonylfunktion an C-11, einer sekundären Acet-

oxygruppe an C-6 sowie tertiären Methylgruppen an C-8, C-10 und C-13: Entkopplung des Tripletts bei $\delta = 2.74$ (9-H) im ¹H-NMR-Spektrum vereinfacht die Signale von 11-Hα ($\delta = 2.82$, dd) und 11-Hβ ($\delta = 2.26$, dd) zu einem AB-System. Das AMX-System von 5-H ($\delta = 3.30$), 6-H (5.36) und 7-H (4.08) läßt sich durch Einstrahlung auf das 6-H-Signal bei $\delta = 5.36$ zuordnen. Beim Entkoppeln von 15-H ($\delta = 5.50$) vereinfacht sich das 18-H-Signal (1.68, dd) zu einem Dublett, 16-Hα und 16-Hβ ($\delta = 2.17$ und 2.04) ergeben Dubletts von Dubletts, und das Signal von 17-H ($\delta = 3.64$) wird schärfer.

C-Atom	1a	16	2 a	2 b	2 c
1	212.30 s	213.18 s	202.49 s	201.81 s	200.93 s
2	39.95 t	40.08 t	124.74 d	124.42 d	125.65 d
3	126.16 d	119.25 d	151.88 d	151.30 d	148.44 d
4	136.87 s	139.04 s	70.95 s	70.11 s	79.66 s
5	43.16 d	47.42 d	50.18 d	48.30 d	43.74 d
6	69.23 d	66.50 d	67.31 d	70.73 d	68.25 d
7	85.25 d	86.52 d	87.40 d	84.77 d	85.42 d
8	47.86 s	47.42 s	47.94 s	48.46 s*)	49.37 s*
9	37.02 d	37.27 d	38.68 d	38.68 d	38.48 d
10	49.47 s	49.70 s	47.65 s	48.10 s*)	47.91 s*
11	33.54 t	33.70 t	34.03 t	34.10 t	34.22 t
12	173.56 s	173.69 s	173.53 s	173.40 s	173.33 s
13	135.24 s	134.92 s	134.98 s	135.44 s	135.18 s
14	146.49 s	147.43 s	146.49 s	145.90 s	146.10 s
15	86.94 d	88.19 d	86.78 d	87.27 d	87.07 d
16	41.41 t	41.44 t	41.34 t	41.41 t	41.54 t
17	49.57 d	49.50 d	49.59 d	49.63 d	49.53 d
18	12.84 q	12.94 q	12.74 q	12.81 q	12.87 q
19	21.58 q	21.78 q	17.39 q	17.16 q	17.19 q
20	126.89 s	126.92 s	126.66 s	126.76 s	126.82 s
21	139.01 d	138.82 d	138.88 d	139.08 d	139.04 d
22	110.48 d	110.51 d	110.38 d	110.48 d	110.51 d
23	143.14 d	143.17 d	142.91 d	143.14 d	143.07 d
29	14.27 q	14.11 q	23.50 q	23.86 q	22.43 q
30	17.13 q	17.52 q	15.83 q	15.96 q	16.87 q
CO_2CH_3	51.65 q	51.69 q	51.52 q	51.61 q	51.68 q
OCOCH ₃	170.73 s		-	169.73 s	170.60 s, 169.50 s
OCOCH ₃	21.13 q	-	-	21.61 q	21.63 q, 21.56 q

Tab. 2. ¹³C-NMR-Spektren von 1a, b und 2a - c (22.63 MHz, CDCl₃, δ bezogen auf TMS = 0)

*) Zuordnung unsicher.

Abweichungen von der Nimbin-Struktur zeigen sich im Ring A. Aus der Carbonyl-Bande bei 1715 cm⁻¹ im IR-Spektrum, der chemischen Verschiebung und der Aufspaltung der 2-H-Signale ($\delta = 2.90$ und 3.01), der Tieffeldverschiebung des 5-H-Signals ($\delta = 3.30$) und dem C-1- bzw. C-2-Signal ($\delta = 212.30$, s, bzw. 39.95, t) folgt, daß Carbonylgruppe und Doppelbindung nicht konjugiert sind. C-3 und C-4 sind Teil eines Cyclohexen-Systems, wie aus dem 3-H-Signal ($\delta = 5.60$, dddq) sowie den Signalen für C-3 ($\delta = 126.16$, d) und C-4 (136.87, s) hervorgeht; C-4 trägt daher nur eine Methylgruppe, der ein Multiplett bei $\delta = 1.78$ im ¹H-NMR- und ein Quartett bei $\delta = 14.27$ im ¹³C-NMR-Spektrum entsprechen. Zwischen den Methylgruppen an C-4 und C-13 kann durch Entkopplungsexperimente im ¹H-NMR-Spektrum unterschieden werden: Einstrahlung auf 29-H ($\delta = 1.78$) vereinfacht die Signale von 2-H α (2.90, dddq) und 2-H β (3.01, dddq) jeweils zu einem Dublett von Dubletts sowie das 3-H-Signal (5.60, dddq) zu einem Quintuplett.

6-Desacetylnimbinen (1b), $C_{26}H_{32}O_6$, ist nach den NMR-Spektren (Tab. 1 und 2) bis auf die fehlende Acetylgruppe an C-6 identisch mit 1a. Die Signale von 5- und 6-H liegen bei $\delta = 2.91$ bzw. 4.00 und sind damit gegenüber 1a um 0.39 bzw. 1.36 ppm nach höherem Feld verschoben. Durch Acetylierung mit Acetanhydrid in Pyridin wurde 1b in 1a übergeführt.

Die in **1a** und **b** enthaltene Ring-A-Struktur findet sich auch in Simarinolid, einem kürzlich aus *Simaruba guanensis* isolierten Quassinoid⁸).

Nimbandiol (2a) und 6-O-Acetylnimbandiol (2b)

Die Summenformel $C_{26}H_{32}O_7$ von **2a** wurde aus der Elementaranalyse ermittelt. Die NMR-Spektren (Tab. 1 und 2) stimmen weitgehend mit den Spektren von 1a, b und des 6-Desacetylnimbins⁴⁾ überein. Danach besitzt 2a das gleiche C-Seco-Grundgerüst wie **1b** mit der α -ständigen, sekundären Hydroxygruppe an C-6, deren Konfiguration durch Doppelresonanzmessungen und NOE-Experimente im FT-Differenzspektrum festgelegt wurde: Bei der Einstrahlung auf die β -ständigen Methylgruppen 19-H (δ = 1.16), 29-H (1.58) und 30-H (1.30) wurde jeweils das 6-H-Signal (4.24) im ¹H-NMR-Spektrum verstärkt, 6-H nimmt somit die β -Position ein. Dem α , β -ungesättigten Enon-System in Ring A entsprechen die IR-Bande bei 1685 cm⁻¹, die Signale für 2-H (δ = 5.75) und 3-H (6.53) im ¹H-NMR-Spektrum sowie die ¹³C-NMR-Signale für C-1 (δ = 202.49), C-2 (124.74) und C-3 (151.88). Die Anwesenheit einer tertiären Hydroxygruppe folgt aus den IR-Banden bei 3420 und 1125 cm⁻¹ und dem ¹H-NMR-Signal bei $\delta = 4.29$ (s). Die Position dieser Hydroxygruppe an C-4 ergibt sich aus dem ¹³C-NMR-Signal bei $\delta = 70.95$ (s), welches nach der Acetylierung um 8.64 ppm nach tiefem Feld verschoben wird. a-Effekte dieser Größenordnung sind auch bei anderen tertiären Methylcyclohexanolen gefunden worden⁹⁾. Die Stellung der Hydroxygruppe an C-4 erklärt auch die Verschiebungen des C-3-Signals ($\delta = 151.88$) um 4.4 ppm nach tieferem Feld und des C-2-Signals (124.74) um 1.16 ppm nach höherem Feld gegenüber den entsprechenden ¹³C-NMR-Signalen des Nimbins, die durch den β - bzw. γ -Effekt der Hydroxygruppe hervorgerufen werden. Das Signal von C-29 ($\delta = 23.50$) wird durch die Acetylierung ebenfalls nach höherem Feld verschoben (Tab. 2). Die α -Konfiguration der OH-Gruppe an C-4 ergab sich aus dem NOE-Experiment: Einstrahlung auf 29-H ($\delta = 1.58$) führt zu einer Verstärkung des 19-H-Signals (1.16) im ¹H-NMR-Spektrum; die Methylgruppe an C-4 ist somit ß-ständig. Eine hinsichtlich Ring A analoge Struktur findet sich in Guanepolid, einem kürzlich aus Simaruba guanensis isolierten Quassinoid⁸⁾. Das Massenspektrum von 2a enthält einen charakteristischen Peak für

ein Fragment M⁺ – 43. Dieses Fragment-Ion ist auch im Massenspektrum des Guanepolids zu finden; es entspricht der Abspaltung des Bruchstücks $CH_3 - C - 4 - O^{10}$.

6-O-Acetylnimbandiol (2b), $C_{28}H_{34}O_8$, ist nach den NMR-Spektren (Tab. 1 und 2) bis auf die Acetoxygruppe an C-6 mit 2a identisch. Die Stellung der Acetoxygruppe ergibt sich aus der Verschiebung des 6-H-Signals ($\delta = 5.47$) um 1.23 ppm nach tieferem Feld im Vergleich zu 2a.

Die Acetylierung von 2a und b mit Acetanhydrid in Pyridin ergab jeweils 4,6-Di-O-acetylnimbandiol (2c).

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Experimenteller Teil

IR: Zeiss IMR-25 Infrarotspektrometer. – Optische Rotation: Perkin-Elmer Polarimeter 241 (CHCl₃). – ¹H-NMR: Bruker HX-90 R, WH-300¹¹) (CDCl₃, innerer Standard TMS), Bruker WH 360¹²) und Bruker WM 500 (CDCl₃)¹²). – ¹³C-NMR: Bruker HX-90 R (22.63 MHz, CDCl₃ innerer Standard TMS). – Massenspektren: Varian MAT 311 A. – Elementaranalysen: Mikroanalytisches Laboratorium des Organisch-chemischen Instituts der Universität Stuttgart. – Dünnschicht- und Hochdruckflüssigkeitschromatographie s. Lit. ^{7,13}).

Isolierung von 1a, b und 2a, b aus "Neem-Extractive": 10 kg Neem-Extractive²⁾ werden mit Petrolether $(30-50 \,^{\circ}C)/95$ proz. wäßr. Methanol (50: 50) verteilt. Chromatographie des Extrakts (547 g) an 4.5 kg Kieselgel mit Petrolether/Ethylacetat (90: 10 \rightarrow 0: 100) und nachfolgende RP-Chromatographie an LiChroprep RP 18 mit Methanol/Wasser (7: 3) liefert 350 mg 1a, 520 mg 1b, 2.5 g 2a und 1.2 g 2b.

Isolierung von 1a, b und 2a aus den Blättern: 10 kg fein gepulverte, luftgetrocknete Neem-Blätter²⁾ werden mit Ether extrahiert. Chromatographie des Extrakts (283 g) an 4.5 kg Kieselgel mit Petrolether/Ethylacetat (90:10 \rightarrow 0:100) und anschließende RP-Chromatographie an LiChroprep RP 18 mit Methanol/Wasser (7:3) ergibt 250 mg 1a, 600 mg 1b, und 1.25 g 2a.

Isolierung von 1a und b aus der Rinde: 20 kg fein zermahlene Neem-Rinde²⁾ werden mit Ether extrahiert. Die Chromatographie des Extrakts (270 g) an 4.5 kg Kieselgel mit Petrolether/Ethylacetat (90: $10 \rightarrow 0$: 100) ergibt 6.0 g 1a und 750 mg 1b.

Nimbinen (1a): Schmp. 134 °C (aus Methanol), $[\alpha]_D^{20} = +168$ ° (CHCl₃, c = 1). – MS: M⁺ m/e = 482. – IR (KBr): 1715 (C=O), 1735, 1260, 1040 (CH₃COO), 1750, 1240, 1030 (CO₂CH₃), 3100, 1500, 870 cm⁻¹ (Furan). – ¹H- und ¹³C-NMR siehe Tab. 1, 2.

C₂₈H₃₄O₇ (482.6) Ber. C 69.71 H 7.05 Gef. C 69.54 H 7.04

6-Desacetylnimbinen (1b): Schmp. 141 °C (aus Methanol), $[\alpha]_{20}^{20} = +132$ ° (CHCl₃, c = 1). – MS: M⁺ m/e = 440. – IR (KBr): 3500 (OH), 1705 (C=O), 1740, 1260, 1060 (CO₂CH₃), 3110, 1500, 880 cm⁻¹ (Furan). – ¹H- und ¹³C-NMR siehe Tab. 1, 2.

C26H32O6 (440.5) Ber. C 70.89 H 7.32 Gef. C 70.90 H 7.38

Die Acetylierung von 220 mg (0.50 mmol) 1 b in 5 ml absol. Pyridin mit 5 ml Acetanhydrid in Gegenwart katalytischer Mengen 4-(Dimethylamino)pyridin¹⁴⁾ (2 h bei Raumtemp.) ergibt 160 mg (66%) 1a, Schmp. 133 °C (aus Methanol). IR- und NMR-Spektren stimmen mit denen des Naturstoffs überein.

Nimbandiol (2a): Schmp. 121 °C (aus Ethylacetat), $[\alpha]_D^{20} = +187.9^\circ$ (CHCl₃, c = 1). - MS: $M^+ m/e = 456. - IR (KBr): 3420, 3320 (OH), 1740, 1260, 1035 (CH_3CO_2), 1125 (C-O), 1685$ (Cyclohexenon), 3100, 1500, 880 cm⁻¹ (Furan). - ¹H- und ¹³C-NMR siehe Tab. 1, 2.

C₂₆H₃₂O₇ (456.5) Ber. C 68.42 H 7.02 Gef. C 68.37 H 7.05

6-O-Acetylnimbandiol (2b): Schmp. 178 ° C (aus Methanol), $[\alpha]_D^{20} = +245$ ° (CHCl₃, c = 1). - MS: $M^+ m/e = 498$. - IR (KBr): 3440 (OH), 1665 (Cyclohexenon), 1735, 1740, 1260, 1035 (CH₃CO₂ und CO₂CH₃), 1125 (C - O), 3120, 1500, 870 cm⁻¹ (Furan). - ¹H- und ¹³C-NMR siehe Tab. 1, 2.

C₂₈H₃₄O₈ (498.6) Ber. C 67.47 H 6.83 Gef. C 67.33 H 6.75

4,6-Di-O-acetylnimbandiol (2c)

a) Durch Acetylierung von 650 mg 2a in 5 ml Pyridin mit 5 ml Acetanhydrid (4 h bei 80 °C). Ausb. 410 mg (53%), Schmp. 231 °C (aus Methanol), $[\alpha]_D^{20} = +115.8^{\circ}$ (CHCl₁, c = 1).

b) Durch Acetylierung von 110 mg 2b in 2 ml absol. Pyridin mit 2 ml Acetanhydrid in Gegenwart einer katalytischen Menge 4-(Dimethylamino)pyridin¹⁴⁾ (48 h bei Raumtemp.). Ausb. 64 mg (48%), Schmp. 230 °C (aus Methanol), $[\alpha]_D^{20} = +114.2^\circ$ (CHCl₁, c = 1). - IR (KBr): 1685 (Cyclohexenon), 1740, 1735, 1725, 1250, 1040 (CH₃CO₂, CO₂CH₃), 3120, 1500, 880 cm⁻¹ (Furan). - ¹H- und ¹³C-NMR siehe Tab. 1, 2.

C30H36O9 (540.2349) Gef. 540.2363 (MS)

- ⁴⁾ C. R. Narayanan und K. Iyer, Ind. J. Chem. 5, 460 (1967).
- ⁵⁾ R. Henderson, R. McCrindle, A. Melera und K. H. Overton, Tetrahedron 24, 1525 (1968).
- 6) D. Lavie und M. K. Jain, J. Chem. Soc., Chem. Commun. 1967, 278.
- W. Kraus und R. Cramer, Liebigs. Ann. Chem. 1981, 181.
 J. Polonsky, Z. Varon, T. Prangé und C. Pascard, 12th International Symposium on the Chemistry of Natural Products 1980, Abstracts of papers, S. 146.
- 9) G. W. Buchanan und M. Gordon in J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press 1972, S. 168; M. Christl, H. J. Reich und J. D. Roberts, J. Am. Chem. Soc. 93, 3463 (1971).
- ¹⁰⁾ J. Polonsky, persönliche Mitteilung.
- ¹¹⁾ Wir danken Prof. H. Schildknecht, Univ. Heidelberg, für die Meßerlaubnis.
- ¹²⁾ Herrn Dr. W. E. Hull, Bruker Physics AG, Karlsruhe, danken wir für die Aufnahme der 360und 500-MHz-Spektren sowie für die Durchführung von NOE-Messungen.
- 13) W. Kraus und M. Bokel, Chem. Ber. 114, 267 (1981).
- 14) G. Höfle, W. Steglich und H. Vorbrüggen, Angew. Chem. 90, 602 (1978); Angew. Chem., Int. Ed. Engl. 17, 569 (1978); G. Höfle und W. Steglich, Synthesis 1972, 619.

[387/80]

¹⁾ R. Cramer, Dissertation, Univ. Tübingen 1979; W. Kraus, R. Cramer, W. Grimminger und G. Sawitzki, 1st European Symposium on Organic Chemistry 1979, Abstracts of papers, S. 526.

²⁾ Für die Beschaffung von Neem-Extractive, Blättern und Rinde danken wir Herrn C. M. Ketkar, Khadi and Village Industries Commission, Poona, Indien.

³⁾ C. R. Narayanan, R. V. Pachapurkar, S. K. Pradhan, V. R. Shah und N. S. Narasimhan, Ind. J. Chem. 2, 108 (1964); M. Harris, R. Henderson, R. McCrindle, K. H. Overton und D. W. Turner, Tetrahedron 24, 1517 (1968); P. Zanno, Dissertation, Columbia University 1974.